MARTIN ENGINEERING

Material containment for safety & efficiency

As tons of material per hour are quickly dropped with great force through receiving chutes onto a receiving conveyor, fugitive cargo often piles up around the frame and dust migrates throughout the area, collecting on idlers, pulleys and floors and affecting air quality. Workers have to continuously clean up the material before it encapsulates the belt, potentially exposing them to a hazardous work area around a moving conveyor, where even incidental contact can result in serious injury in a split second. Considering that most conveyor injuries occur though routine maintenance or clean up, controlling fugitive material is becoming one of the primary elements in a well-organized effort to reduce hazards and prevent injuries.

In a properly-engineered transfer point, each component, from the chute design to the cradles and dust seals, is employed to maximize its specific function and contain dust and fines, while at the same time offering workers easy access for maintenance.

Transfer points

Containment is the key to avoiding spillage and dust, and there are a number of components designed for this purpose. Although shaped transfer chutes and rock boxes direct the material flow to mitigate the concussion of material on the belt, most high-volume operations need one or more impact cradles to absorb the force of the cargo stream. Heavy duty impact cradles can be equipped with rubber or urethane impact bars with a top layer of slick UHMW plastic to minimize belt friction. Able to withstand impact forces as high as 53.4 to 75.6 kN and drop heights of up to 15.2 m, support beams in the center of the cradle are set slightly below the receiving belt’s line of travel. In this way, the belt avoids sustained friction when running empty and yet can absorb hard impacts during loading, while still retaining a tight belt seal.

Within the settling zone – located after the impact cradle in the conveyor chute box – slider cradles can then create a troughed belt to center the cargo and reduce disruption quickly, aiding in dust settlement. Slider cradles, located down the length of the skirted area, have several functions. One is to create a trough angle that adequately centers the load. The trough angle also plays an important part in retaining a tight seal between the belt and the skirt. Lastly, utilizing track mount idlers in between each cradle, a smooth belt path is created through the settling area, one that can be easily maintained. A smooth belt path should have no gaps, minimizing disruption and promoting containment, allowing dust and fines to settle into the cargo stream prior to leaving the containment area.

Airflow

With a constant stream of material crashing on the impact point of the receiving belt, the transfer point can be extremely turbulent, and this turbulence must be contained. By slowing the airflow in the skirted area, suspended dust is allowed to settle onto the cargo path. To contain the mixture of air and disrupted material, a stable, correctly-supported belt is needed for the sealing components to function properly. Without a stable beltline, the belt will sag between idlers, and sealing components will not prevent air and fine material from escaping out of the resulting gaps, causing spillage and dust emissions.

Chute sealing

By closing gaps and keeping a tight seal on the belt, apron seals can also be attached to the chute walls to prevent fugitive dust and fines from escaping. The external design requires minimal tools and no confined space entry to inspect, adjust or replace wear liners or skirts, and in most cases can be performed by a single worker. The low profile of the skirting assembly needs only a few inches of clearance, allowing installation and maintenance in space-restricted areas. The design of these components drastically reduces scheduled downtime and the potential workplace hazards associated with replacement and adjustment.

Dust filtration

In operations with limited space for a settling zone or especially dusty materials, dust bags and curtains may be essential components. Providing passive relief via positive air pressure created at belt conveyor loading zones, dust bags prevent the escape of airborne particulates by venting the air and collecting dust at the same time. Installed at the exit of the loading zone and mounted in the skirtboard cover, dust curtains can help create a plenum for dust suppression and dust collection. For additional dust control, an integrated air cleaner system can be installed at the point of emission, containing a suction blower, filtering elements and a filter cleaning system.

//www.martin-eng.com" target="_blank" >www.martin-eng.com:www.martin-eng.com

x

Related articles:

Issue 10/2017 MARTIN ENGINEERING

Controlling fugitive dust emissions on limestone conveyor transfer point

Beyond potentially increasing the cost of operation, cumbersome equipment and unpleasant cleaning procedures all add to processing costs and can take a toll on staff morale. However, some operators,...

more
Issue 7/2023 MARTIN ENGINEERING

Conveyor transfer point engineered for hot clinker

For thousands of years, cement production has heated the constituents used in the mix to the highest temperatures possible to remove impurities. Today, meal or raw material for Portland cement is...

more
Issue 3/2015 MARTIN ENGINEERING

Slider cradles designed to reduce conveyor spillage and belt wear

Martin Engineering from Neponset, IL/USA, a leading manufacturer in bulk material handling technology has introduced two conveyor system components designed to mitigate expensive spillage and belt...

more
Issue 9/2018 MARTIN ENGINEERING

Conveyor equipment manufacturer uses unique strategy to control dust emissions

An efficient process Continental Cement has been in operation since 1903. Over more than a century, the company has continued to improve and increase operations to reach a current cement production...

more
Issue 10/2018 MARTIN ENGINEERING

Cement plant overcomes remote conveyor issues with power generation technology

The Martin Roll Gen System is designed to create a self-contained mini power station that allows operators to run electrical monitoring systems, safety devices and a variety of other components. With...

more