REFERENCES
[1] Agnello, V.: Dolomite and Limestone in South Africa: Supply and demand, Report R49/2005, Department: Mineral Resources, Republic of South Africa, Pretoria, 2005
[2] Batumike Mwandulo, J.; Cailteux, J.; Kampunzu, A.: Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt, Gondwana Res. 11 (2007), pp. 432-447
[3] Altermann, W.; Wotherspoon, J.: The Carbonates of the Transvaal and Griqualand West sequences, with special reference to the Lime Acres deposit, Mineral Deposita 30 (1995), pp. 124-134
[4] Piringer, H.: Lime Shaft Kilns, Energy Procedia 120 (2017), pp. 75-95
[5] Vola, G.; Bresciani, P.; Rodeghero, E.; Sarandrea, L.; Cruciani, G.: Impact of rock fabric, thermal behavior, and carbonate decomposition kinetics on quicklime industrial production and slaking reactivity, J. Therm. Anal. Calorim. (2018), pp. 1-27
[6] Vola, G.; Christiansen, T.; Sarandrea, L.; Ferri, V.: Carbonate Rocks characterization for the industrial lime manufacturing, 14th Euroseminar on Microscopy Applied to Building Materials, Helsingor, 2013
[7] Bresciani, P.; Colombari, V.; Vola, G.; Sarandrea, L.: Analyse to excel, Int. Cement review, (2016), No.10, pp 48-50
[8] Kandler, K.; Benker, N.; Bundke, U.; Cuevas, E.; Ebert, M.; Knippertz, P.; Rodriguez, S.; Schutz, L.; Weinbruch, S.: Chemical composition and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife (Spain) derived by electron microscopy, Atmos. Environ. 41 (2007), No. 37, pp. 8058-8074
[9] Olszak-Humienik, M.; Jablonski, M.: Thermal behaviour of natural dolomite, J. Therm. Anal. Calorim. 119 (2015), No. 3, pp. 2239-2248
[10] Warne, S.; Morgan, D.; Milodowski, A.: Thermal analysis studies of the dolomite, ferroan dolomite, ankerite series, Part 1: Iron content recognition and determination by variable atmosphere DTA, Thermochim. Acta 51 (1981), No. 2–3, pp. 105-111
[11] Beukes, N.: Facies relations, depositional environments and diagenesis in a major Early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, Southern Africa, Sediment. Geol. 54 (1987), No. 1-2, pp. 1-46
[12] Fischer, W.; Knoll, A: An iron shuttle for deepwater silica in Late Archean and Early Paleoproterozoic iron formation, Geol. Soc. Am. Bull. 121 (2009), No. 1-2, pp. 222-235
[13] Binda, P.; Van Eden, J.: Sedimentological evidence on the origin of the Precambrian Great conglomerate (Kundelungu tillite), Zambia, Palaeogeogr. Palaeoclimatol. Palaeoecol. 12 (1972), No. 3, pp. 151-168
[14] Mills, J.: A technical discussion of mining operations in the lime and cement industries of Zambia and Malawi, PhD Thesis, University of Nottingham, 2000
[15] Borgwardt, R.; Harvey, R.: Properties of carbonate rocks related to sulfur dioxide reactivity, Environ. Sci. Technol. 6 (1972), No 4, pp. 350-360
[16] Harvey, R.: Petrographic and mineralogical characteristics of carbonate rocks related to sorption of sulfur oxides in flue gas, Illinois Geol. Survey Environmental Geology note 38, 1970
[17] Raask, E.: Mineral impurities in coal combustion: behavior, problems, and remedial measures, Hemisphere Publishing Corp, New York, 1985, pp. 94-96
[18] Hedin, R.: Changes occurring in the limestone during heating before calcination, Swed. Cem. Conc. Res. Inst. Bull. 23 (1954), p. 34
[19] Ruckensteiner, G.; Burczeck, J.; Ludwig, U.: Factors affecting the stability of the internal structure when burning limestone, Zement-Kalk-Gips 48 (1995), No. 6, pp. 342-348
[20] Folk, R.: Spectral subdivision of limestone types, in: Ham, W. (Editor): Classification of Carbonates Rocks Symposium, American Assoc. of Petroleum Geologist Memoirs, Tulsa, 1962, pp. 62-84
[21] Boggs S. Jr: Petrology of sedimentary rocks, 2nd edition, Cambridge University Press, Cambridge, 2009, doi: 10.1017/CBO9780511626487, pp. 344-346
[22] Marinoni, N.; Bernasconi, A.; Della Porta, G.; Marchi, M.; Pavese, A.: The role of petrography on the thermal decomposition and burnability of limestones used in industrial cement clinker, Mineral. Petrol. 109, No. 6, pp. 719-731
[23] Kantiranis, N.; Tsirambides, A.; Filippidis, A.; Christaras, B.: Technological characteristics of the calcined limestone from Agios Panteleimonas, Macedonia, Greece, Mater. Struct. 32 (1999), No. 7, pp. 546-551
[24] Boynton, R.: Chemistry and technology of lime and limestone, 2nd edition, John Wiley & Sons, New York, 1980, pp. 160-161,180
[25] Borgwardt, R.: Calcination kinetics and surface area of dispersed limestone particles, AIChE J. 31 (1985), No. 1, pp. 103-111
[26] Lech, R.; Wodnicka, K.; Pedzich, Z.: Effect of the limestone fabric on the fabric development in burnt lime (Part 2), ZKG international 62 (2009), No. 8, pp. 63-72
[27] Soltan, A.: Petrographic modelling of Egyptian limestones for quicklime manufacture, Arabian J. Geosci. 4 (2011), No. 5, pp. 803-815
[28] Eriksson, M.: Characterization of kiln feed limestone by dynamic heating rate thermogravimetry, Int. J. Miner. Process. 147 (2016), pp. 31-42
[29] Beruto, D.; Botter, R.; Cabella, R.; Lagazzo, A.: A consecutive decomposition–sintering dilatometer method to study the effect of limestone impurities on lime microstructure and its water reactivity, J. Euro. Ceram. Soc. 30 (2010), No. 6, pp. 1277-1286
[30] Vola, G.; Sarandrea, L.; Della Porta, G.; Cavallo, A.; Jadoul, F.; Cruciani, G.: The influence of petrography, mineralogy and chemistry on burnability and reactivity of quicklime produced in Twin Shaft Regenerative (TSR) kilns from Neoarchean limestone (Transvaal Supergroup, South Africa), Mineral Petrol. 112 (2017), No. 4, pp. 555-576
[31] Alaabed, S.; Soltan, A.; Abdelghany, O.; Amin, B.; El Tokhi, M.; Khaleel, A.; Musalim, A.: United Arab Emirates limestones: impact of petrography on thermal behavior, Mineral. Petrol. 108 (2014), No. 6, pp. 837-852
[32] Silva, M.; Specht, E.; Schmidt, J.; Al-Karawi, J.: Influence of the origin of limestone on its decomposition temperature and on the specific heat capacity and conductivity of lime, High Temperatures – High Pressures 38 (2010), No. 4, pp. 361-378
[33] Soltan, A.; Serry, M.: Impact of limestone microstructure on calcination activation energy, Adv. Appl. Ceram. 110 (2011), No. 7, pp. 409-416